

Private Group Communication in Blockchain Based on Diffie-Hellman Key Exchange

Zachary Laney and Yoohwan Kim

University of Nevada Las Vegas

▶ <u>Yoohwan.Kim@unlv.edu</u>

Private Group Communication

Introduction What is the problem with Private Group Communication?

Who has sent private information to another person on internet?

Who has sent private information to a group of people on the internet?

Who has sent private information to a group of people they've never met?

Is there a solution for securely sending private information to an anonymous group?

Current Group Key Protocols

What is the problem with the current standard of securely distributing a Group Key?

They require every user to actively participate in the entire Group Key creation process.

They require a trusted centralized third party to transfer the information.

Creation

Security

Delivery

4

The distributed immutability of blockchain technology can help.

Challenges

WITH ESTABLISHING PRIVATE GROUP COMMUNICATION ON THE OPEN DISTRIBUTED BLOCKCHAIN

Open Distributed Blockchain Three Main Challenges

Blockchain Attributes	Open	Data	Closed Data			
	Write Data	Anyone	Write Data	Anyone		
Public Access	Read Data	Anyone	Read Data	Permission		
	Write Data	Permission	Write Data	Permission		
Private Access	Read Data	Anyone	Read Data	Permission		

In Ethereum anyone can read or write data.

Private Group Communication on the Open Distributed Blockchain Challenge #2

8

Distributed Immutability and Public Verifiability come with a cost.

Blockchain Attributes	Open Data			
	Write Data	Anyone		
Public Access	Read Data	Anyone		

Open Data • Anyone can see the information on the ledger.

Solution: Encrypt the data.

Private Group Communication on the Open Distributed Blockchain Challenge #3

9

Transferring information via the Open Distributed Blockchain is inefficient.

Diffie-Hellman Key Exchange for establishing a private communication channel

Diffie-Hellman key Exchange Principle

$$(g^{x})^{y} = g^{xy} = (g^{y})^{x}$$

11

 $K = (G^{X} \mod N)^{Y} \mod N$

 $= (G^{Y} \mod N)^{X} \mod N$

 $= \mathbf{G}^{\mathbf{X}\mathbf{Y}} \mod \mathbf{N}$

13

Previous Research FOR ESTABLISHING PRIVATE GROUP COMMUNICATION

Group Key Creation with Diffie- Hellman key Exchange

$$((g^{x})^{y})^{z} = g^{xyz} = (g^{y})^{x}^{z}$$

 $K = ((\underline{G^{X} \mod N})^{Y} \mod N)^{Z} \mod N$

 $= ((G^{Y} \mod N)^{Z} \mod N)^{X} \mod N$

 $= ((G^{Z} \mod N)^{X} \mod N)^{Y} \mod N$

= G^{XYZ} mod N

Group Diffie Hellman Key Exchange Algorithm Based Secure Group Communication

Lavanya R, Dr. S V Sathyanarayana. International Conference on Applied and Theoretical Computing and Communication Technology, IEEE 2017

16

Ring Diagram

Exponentiations: n

How it works

Up Flow Stage

- User 1 adds to a list every possible combination of the generator raised to the power of their private key and passes it to User 2.
- User 2 adds to a list every possible combination of the generator raised to the power of their private key and passes it to User 3.
- User 3 adds to a list every possible combination of the generator raised to the power of their private key and passes it to User 4.
- The last user raises every number in list to the power of their private key.

Down Flow Stage

- The last user sends the list left back to User 3, User 2, User 1 who then raise their group key to the power of their private key.
- User 1, User 2, User 3, User 4 have calculated the same group key.

A better way? (e.g., 8 people)

- With divide-and-conquer, A, B, C, and D each perform one exponentiation, yielding g^{abcd}; this value is sent to E, F, G, and H.
 - ▶ In return, participants A, B, C, and D receive g^{efgh} .
 - A and B each perform one exponentiation, yielding g^{efghab}, which they send to C and D, while C and D do the same, yielding g^{efghcd}, which they send to A and B.
 - A performs an exponentiation, yielding g^{efghcda}, which it sends to B; similarly, B sends g^{efghcdb} to A. C and D do similarly.
 - A performs one final exponentiation, yielding g^{efghcdba} = g^{abcdefgh}, while B does the same to get g^{efghcdab} = g^{abcdefgh}; again, C and D do similarly.
 - E through H simultaneously perform the same operations starting g^{abcd}
 - Once completed, all participants will possess the secret g^{abcdefgh}, but each participant will have performed only four modular exponentiations, not eight by a simple circular arrangement.
- ▶ We can reduce the number of modular exponentiations to $log_2(N) + 1$

An Efficient Improved Group Key Agreement Protocol Based on Diffie-Hellman Key Exchange

18

Yang Guang-ming, Lu Ya-feng, MA Da-ming. IEEE, 2017

Binary Tree Diagram

How it works

- User 1 and User 2 both raise the generator to the power of their private keys and trade with each other.
- ▶ User 2 raises User 1's result to the power of their private key.
- User 1 raises User 2's result to the power of their private key.
- ▶ User 3 and 4 perform the same steps as User 1 and User 2.
- User 1 trades their result with User 3 and raises the other's result with their current number.
- User 2 trades their result with User 4 and raises the other's result with their current number.
- User 1, User 2, User 3, and User 4 have all calculated the same group key.

Secure Collaborative Key Management for Dynamic Groups in Mobile Networks

C. J. a. M. H. Sukin Kang Journal of Applied Mathematics, 2014.

Protocol	Action	Rounds	Messages	Mod Exp.	Signature	Verification
	Join	4	<i>n</i> +3	<i>n</i> +3	4	<i>n</i> +3
GDH	Leave	1	1	<i>n</i> -1	1	1
ODII	Merge	<i>m</i> +3	<i>n</i> +2 <i>m</i> +1	<i>n</i> +2 <i>m</i> +1	<i>m</i> +3	<i>n</i> +2 <i>m</i> +1
	Partition	1	1	n-p	1	1
	Join	2	3	7	3	3
CTD	Leave	1	1	(3n+4)/2	1	1
SIK	Merge	2	3	3 <i>m</i> +4	2	3
	Partition	1	1	(3n+4)/2	1	1
	Join	2	3	<u>3h-3</u>	2	3
TODH	Leave	1	1	3h-3	1	1
TODII	Merge	2	3	3h-3	2	3
	Partition	h	2h	3h	h	h
	Join	2	2 <i>n</i> +2	3	2	<i>n</i> +3
PD	Leave	2	2 <i>n</i> -2	3	2	<i>n</i> +1
BD	Merge	2	2n+2m	3	2	<i>n</i> + <i>m</i> +2
	Partition	2	2n-2p	3	2	<i>n-p</i> +2
	Join	3	3	<i>n</i> +2	3	3
CVD	Leave	1	1	<i>n</i> -2	1	1
CKD	Merge	3	<i>m</i> +2	n+2m	3	<i>m</i> +2
	Partition	1	1	<i>n-p-</i> 1	1	1
	Join	2	2	<i>n</i> +2	2	2
CODH	Leave	1	1	<i>n</i> -1	1	1
CODI	Merge	2	2	<i>n</i> + <i>m</i> +1	2	2
	Partition	2	2	n-p	2	2

Group Diffie-Hellman (GDH)

Skinny Tree (STR)

Tree-Based Group Diffie-Hellman (TGDH)

Burmester and Desmedt (BD)

Centralized Key Distribution (CKD)

Collaborative Diffie-Hellman (CDH)

Five Main Components of Group Key Protocols:

Size of message

Amount of messages

Amount of exponentiations

Data Structure

Balance of operations between the User and the Group Leader

All users must actively participate in all phases of the process.

Problem #2 with Traditional Group Key Algorithms

21

Man in the Middle AttackImage: Colspan="2">Image: Colspan="2"Image: Colspan="2"

Impersonation Attack

Service Outage

Reconnecting

The connection has been lost. Attempting to reconnect to your session... Connection attempt: 1 of 20

Cancel

Proposed System For establishing private group communication on the open distributed blockchain

Private Group Communication on the Open Distributed Blockchain Solution: **Step 2**

Private Group Communication on the Open Distributed Blockchain Pairwise Diffie-Hellman Cryptography

GroupJSONFile Architectural Layout

GroupJSONFile Layout

A.	groupLeaderWalletAddress	Header
В.	groupLeaderPublicKey	
C.	groupName	
D.	recipientWalletAddresses[]	Body
E.	recipientPublicKeys[]	
F.	recipientEncryptedGroupKeys[]	
G.	(Optional) encryptedData	

Interplanetary File System (IPFS)

Uploader Uploader Uploader Uploader Uploader Uploader Uploader (b) IPFS

MetaMask

Sroup File Creation × +	
← → C ③ localhost/BlockchainDAPP/	
Group Key Web Interface	Select the users allowed to decrypt the file: Add Refresh the smart contract user list (1 other users not including you loaded)
Load a data file: Choose File test.txt	
Private Key: 96f0653960dd73bbb02b608ce84ed671	
Notification Email Address: userTwo@email.com	
Join Smart Contract Unjoin Smart Contract Group Key:	
69f38c1a46ec69b4e43871968377a443	Generate
Group Name: UNLV	
You've selected 1 users. Click it's button to remove that user as a recipient:	
0x3d66e6DD14Fa322C8aBE6302d192a1696a6258bE	
Send file to selected users	

		35
Group File Extractor × +		
← → C () localhost/BlockchainDAPP/JSONExtractor.php	?groupfile=QmSyDfHvytRVyQ4jSsrSceWePTN	LhPnzwgrLBkh1jsiWsZ
ISON Extractor		
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62	58bD	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62	58bD	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash:	58bD	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Add	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Ad Group Name: UNLV	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Add Group Name: UNLV Recipient Status: You are a recipient. Deservented Group New 60628c1a46ac60b4c42874068277a442	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Ad Group Name: UNLV Recipient Status: You are a recipient. Decrypted Group Key: 69f38c1a46ec69b4e43871968377a443	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Add Group Name: UNLV Recipient Status: You are a recipient. Decrypted Group Key: 69f38c1a46ec69b4e43871968377a443	Load Details	
Your Wallet: 0x3d66e6DD14Fa322C8aBE6302d192a1696a62 Group File IPFS Hash: QmSyDfHvytRVyQ4jSsrSceWePTNLhPnzwgrLBkh1jsiWsZ Sender Address: 0x10FB893e8Fc031D4d4f0E087EcdD832ac8Add Group Name: UNLV Recipient Status: You are a recipient. Decrypted Group Key: 69f38c1a46ec69b4e43871968377a443	Load Details	

Performance Analysis

FOR GENERATING AN ENCRYPTED GROUP KEY AND PREPARING IT FOR EMAIL

Secure Collaborative Key Management for Dynamic Groups in Mobile Networks

C. J. a. M. H. Sukin Kang Journal of Applied Mathematics, 2014.

Diagram of all alternatives

Comparison with our Distributed Group Key Algorithm (DGKA)

FIOLOCOI	Action	Kounus	Wiessages	widd Exp.	Signature	vermeation							
	Join	4	<i>n</i> +3	<i>n</i> +3	4	<i>n</i> +3	Protocol	Action	Rounds	Messages	Mod Exp.	Signature	Verification
GDH	Leave	1	1	<i>n</i> -1	1	1		Loin	2	2	2. 1	0	1
02	Merge	<i>m</i> +3	n+2m+1	n+2m+1	<i>m</i> +3	n+2m+1	DGKA	Join	2	2	21-1	0	1
	Partition	1	1	n-p	1	1		Leave	0	0	0	0	0
	Join	2	3	7	3	3		Merge	0	0	0	0	0
STD	Leave	1	1	(3n+4)/2	1	1		Partition	0	0	0	0	0
SIK	Merge	2	3	3 <i>m</i> +4	2	3							
1 1	Partition	1	1	(3n+4)/2	1	1	Stage	Actio	on Send	Receive	Mod Exp.	Signature	Verification
	Join	2	3	3h-3	2	3		Joir	1	1	2	0	1
TCDU	Leave	1	1	3h-3	1	1	Ganarallisar	r Leav	e 0	0	0	0	0
IGDH	Merge	2	3	3h-3	2	3	Generalose	Merg	ge 0	0	0	0	0
	Partition	h	2h	3h	h	h		Partiti	on 0	0	0	0	0
	Join	2	2n+2	3	2	n+3		Joir	n n-1	n	n-1	0	0
RD	Leave	2	2 <i>n</i> -2	3	2	<i>n</i> +1	I+1 Group and ar	Leav	e 0	0	0	0	0
BD	Merge	2	2n+2m	3	2	<i>n+m+2</i>	GroupLead	Merg	ge 0	0	0	0	0
	Partition	2	2n-2p	3	2	n-p+2		Partiti	on 0	0	0	0	0
	Join	3	3	<i>n</i> +2	3	3							
CKD	Leave	1	1	n-2	1	1				,		· .	
CKD	Merge	3	<i>m</i> +2	n+2m	3	<i>m</i> +2	Our	protoc	OI USES (a similar (amount (ot operat	ions.
	Partition	1	1	<i>n-p-</i> 1	1	1			<u>,</u>				
	Join	2	2	<i>n</i> +2	2	2	Our pi	OTOCOL	perform	is above	the stand	dard etti	ciency.
CODH	Leave	1	1	<i>n</i> -1	1	1	<u> </u>				المحرية المالي	المعرب مرارين	
CODH	Merge	2	2	n+m+1	2	2		protocc	d is imm	une to tr	aditional	vuinerat	Dilities.
	Partition	2	2	n-p	2	2							
All of	these ar	re base	d on ring	and bin	ary tree	designs.							

Our Results

38

After all of the users publish their required items to the smart contract a Group Leader may establish private group communication for **500 users** in **0.852 seconds** of time using the **3027 bit Public Key IETF standard**

Conclusion and Future Work

Conclusion

40

Our protocol is the only one available that operates on the open distributed blockchain.

Our protocol is more secure than the alternatives.

No software required, only a regular computer and internet access.

Future Research

41

Future research would enable 3 new features:

Implementing Elliptic Curve Cryptography	• A 256 bit Public Key is equivalent to a 3027 Diffie-Hellman bit Public Key meaning faster and cheaper transactions for the same security.
Implementing Perfect Forward Secrecy	• A solution for establishing long term private group communication channels that can't be decrypted if the Group Key is stolen.
Implementing dynamic Adding and Removing of users to an existing group	• A solution for private group communication channels needing to be reinstated each time a user is removed or added to an existing group.

The Grand Conclusion

